LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2010
PH 2100 - PHYSICS FOR CHEMISTRY
Date \& Time: 22/04/2010 / 1:00-4:00
Dept. No.
Max. : 100 Marks

PART - A
Answer ALL questions.

1. Draw the graphs of kinetic and potential energy of a particle executing simple harmonic motion.
2. Define moment of inertia of a body about a given axis.
3. State Kepler's laws.
4. Define gravitational field strength.
5. Define Poisson's ratio.
6. A spherical soap bubble of radius 1 cm is blown in air. How much energy will be needed to increase the radius to 3 cm ? (surface tension of soap solution is $0.03 \mathrm{~N} / \mathrm{m}$.)
7. What is normalization of a wave function?
8. What is the significance of the wave function?
9. On sounding two tuning forks A and B together, 9 beats per second are produced. The frequency of B is 512 Hz . If the prong of A is slightly tapped, the beat frequency decreases. Find the frequency of A .
10. What are nodes and antinodes?

PART - B

Answer any FOUR questions.

$$
(4 \times 7.5=30 \text { marks })
$$

11. Show that oscillations of a liquid in a U tube are simple harmonic.
12. Explain any two experimental tests of general theory of relativity.
13. Obtain a general expression for excess pressure over curved surface of a liquid.
14. Apply Heisenberg's uncertainty principle to prove the non-existence of electron in the nucleus.
15. (a) Explain Doppler red shift.
(b) A source emitting sound of frequency 60 Hz is moving towards a stationary observer with a velocity of $100 \mathrm{~m} / \mathrm{s}$. Calculate the apparent frequency of the sound as heard by the observer. (velocity of sound $=330 \mathrm{~m} / \mathrm{s}$)
(4)

PART - C

Answer any FOUR questions.
($4 \times 12.5=50$ marks $)$
16. (a) Obtain an expression for the acceleration of a sphere rolling down an inclined plane.
(b) Calculate the angular momentum of an object of mass 3 kg , moving in a circle of radius 6 m , with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$.
17. (a) With a neat diagram describe Boy's experiment to determine the universal gravitational constant.
(b) When a planet moves in a circular orbit of radius R about the Sun, the centripetal force is provided by the gravitational attraction. Use this to show that the period T of such a planet is given by $T^{2}=4 \pi^{2} R^{3} / G M$.
18. Define the three modulii of elasticity $\mathrm{q}, \mathrm{n}, \mathrm{k}$ and obtain the relation connecting these quantities.
19. (a) What are matter waves?
(3)
(b) With a neat diagram, describe Davisson and Germer experiment for the study of electron diffraction.
20. Explain in detail the method of verifying the laws of transverse vibrations in strings.

